An overview of plant data for machine learning: categories, availability, and common problems

Ruomu Tan*, Benjamin Klöpper

Motivation

- The report [1] gives an overview of the categories of data that are typically available in chemical plants.
- Plant data can be leveraged when developing machine learning model for operation support. The report also highlights the availability and typical problems when using the data.
- We designed and distributed a questionnaire [2] with use case owners to collect feedback based on the experience with real-life data from industrial plants.
- As a deliverable of TP5, the report will be useful for researchers, especially those with limited experience of real-life data, as a starting point for understanding and exploration of plant data before developing and deploying ML solutions.

Availability of each category of data

- Several examples of data availability are shown as follows:

Data	Availability	Time window	For sharing?
Time series	(almost) Always	Several years	NDA needed
Alarm\&Event	Sometimes events not available	Months to years	NDA needed
Shift-book entry	Available in free text	Several years	Strict NDA due to data protection
MES data	Available, more frequently seen in batch processes	A few years	NDA needed
Image/video	Rarely available	Often not stored	N/A
Design data	Always	N/A	Anonymization needed

- The data availability vary significantly among the categories. There may exist knowledge gaps in utilizing less available data for ML solutions.
- The restriction in data sharing may also impact the usage of data.

Conclusions and next steps

- Conclusions:
- The availability of each category of data can differ greatly due to the characteristic of plants and the configuration of the data collection systems.
Some categories of data, e.g., time trends of process variables, are much more frequently used than the others. Multiple data categories are connected and sometimes complementing one another.
- Design data may always exist; however the bottleneck of using such data is anonymization.
- Nextsteps
- Continuous effort to collect feedback and improving the report;
- Exploration of the data categories that are less used;
- Fusion of data from multiple categories.

Common problems when using the data

- Two examples of the common problems in the data

Category	Problems
Laboratory results	- Time delay of the lab results - Sparseness and multiple sampling rate - Human error when doing lab analysis - Unreliable timestamps when recording the results - Mapping problem when a sample represents the accumulated status of the plant - Changes in measurements/reporting
Alarms and events (A\&E)	- Data format is different from time series - Irrelevant A\&E data for a certain purpose - Not reliable events when an alarm is acknowledged - Time delay between the event of PVs change and actual change in the PV trends - Incomplete A\&E data when a relevant status change is not recorded

Acknowledgement

- The authors would like to thank the following KEEN colleagues:
- Marco Gärtler, Silke Merkelbach and Valentin Khaydarov for distributing the questionnaire to the use case owners in TP5;
- Franz Bähner, Supasuda Assawajaruwan and Laura Neuendorf for kindly providing inputs to the questionnaire;
- Simone Rogg for supporting the activity and providing guidance for collecting feedback.
- We also looking forward to your inputs in the future!

